当前位置>主页 > 期刊在线 > 通信工程 >

通信工程25年4期

基于Wi-Fi/PDR 的室内融合定位算法研究
吴志高1,2,黄康妮1,2,龙克柳1,2
(1. 江西理工大学 信息工程学院,江西 赣州 341000;2. 多维智能感知与控制江西省重点实验室,江西 赣州 341000)

摘  要:伴随着室外定位系统的成熟,人们对室内定位的需求逐渐增大,然而,面对复杂的室内定位环境,单一室内定位技术无法实现高精度的定位。Wi-Fi 定位技术和PDR 定位技术是常用的室内定位技术,其中PDR 定位技术存在累计误差,定位稳定性较差,无法长时间单独使用,Wi-Fi 定位技术易受到室内复杂环境影响。为了减小PDR 和Wi-Fi定位技术的误差,得到更精确的定位结果,针对两种定位技术的优点与局限性,文章提出了两种融合算法:加权融合定位算法、基于扩展卡尔曼滤波的融合定位算法。融合算法减小了累计误差对PDR 定位结果的影响,同时提高了Wi-Fi定位的精度。实验结果表明,文章提出的算法相比单一定位技术和加权融合定位算法,有更好的定位精度和稳定性。


关键词:室内定位;Wi-Fi 指纹定位;PDR 定位;融合定位



DOI:10.19850/j.cnki.2096-4706.2025.04.004


基金项目: 大学生创新创业训练资助项目(202410407040)


中图分类号:TN953;TP301.6                     文献标识码:A              文章编号:2096-4706(2025)04-0015-07


Research on Indoor Fusion Positioning Algorithm Based on Wi-Fi/PDR

WU Zhigao1,2, HUANG Kangni1,2, LONG Keliu1,2

(1.School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2.Jiangxi

Province Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, China)

Abstract: With the maturation of outdoor positioning systems, the demand for indoor positioning has gradually increased. However, facing the complex indoor positioning environments, no single indoor positioning technology can achieve highprecision positioning. Wi-Fi and Pedestrian Dead Reckoning (PDR) positioning technologies are commonly used indoor positioning technologies. And PDR suffers from cumulative errors and poor stability, making it unsuitable for long-term standalone use, while Wi-Fi positioning technology is easily affected by the complex indoor environments. To reduce the errors associated with PDR and Wi-Fi positioning technologies and obtain more precise positioning results, this paper proposes two fusion algorithms of a weighted fusion positioning algorithm and a fusion positioning algorithm based on the Extended Kalman Filter (EKF). The fusion algorithms reduce the impact of cumulative errors on PDR positioning results while improving the precision of Wi-Fi positioning. Experimental results show that the proposed algorithm in this paper offers better positioning precision and stability compared to standalone positioning technology and the weighted fusion positioning algorithm.

Keywords: indoor positioning; Wi-Fi fingerprint positioning; PDR positioning; fusion positioning


参考文献:

[1] 闫大禹,宋伟,王旭丹,等. 国内室内定位技术发展现状综述 [J]. 导航定位学报,2019,7(4):5-12.

[2] LIU F,LIU J,YIN Y Q,et al. Survey on WiFi-based Indoor Positioning Techniques [J].IET Communications,2020,14(9):1372-1383.

[3] KONG X T,WU C,YOU Y,et al. Hybrid Indoor Positioning Method of BLE and PDR Based on Adaptive Feedback EKF With Low BLE Deployment Density [J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-12.

[4] SUN M,WANG Y,XU S J,et al. Indoor Positioning Tightly Coupled Wi-Fi FTM Ranging and PDR Based on the Extended Kalman Filter for Smartphones [J].IEEE Access,2020,8:49671-49684.

[5] 席志红,占梦奇. 基于位置范围限定的WiFi-KNN 室内定位算法 [J]. 应用科技,2020,47(4):66-70.

[6] MEHRABIAN H,RAVANMEHR R. Sensor Fusion for Indoor Positioning System Through Improved RSSI and PDR Methods [J].Future Generation Computer Systems,2023,138:254-269.

[7] 韩笑. 基于Wi-Fi/PDR 融合的室内定位算法研究 [D].北京:北京工业大学,2018.

[8] 郝森鑫.基于WI-FI/PDR融合的室内定位技术研究 [D].成都:西华大学,2020.

[9] CHEN J,SONG S,YU H P. An Indoor Multi-source Fusion Positioning Approach Based on PDR/MM/WiFi [J].AEUInternational Journal of Electronics and Communications,2021,135:153733.

[10] LIU X,ZHOU B D,HUANG P P,et al. Kalman Filter-based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization [J].IEEE Sensors Journal,2021,21(6):8479-8490.

[11] HOU B N,WANG Y CH. Positioning by Floors Based on WiFi Fingerprint [J].Measurement Science and Technology,2024,35(4):045003.

[12] CHEN G K,GUO X Y,LIU K,et al. RWKNN: A Modified WKNN Algorithm Specific for the Indoor Localization Problem [J].IEEE Sensors Journal,2022,22(7):7258-7266.

[13] 艾青,杨俊杰,蒋伟,等. 改进PDR 与RSSI 融合的室内定位方法 [J]. 传感器与微系统,2023,42(12):75-78+82.

[14] FENG D Q,WANG C Q,HE C L. Kalman-Filterbased Integration of IMU and UWB for High-accuracy Indoor Positioning and Navigation [J].IEEE Internet of Things Journal,2020(4):3133-3146.


作者简介:吴志高(2002.02—), 男, 汉族,海南澄迈人, 本科在读, 研究方向: 室内定位; 黄康妮 (2005.04—),女,汉族,江西靖安人,本科在读,研究方向:室内定位;龙克柳(1993.05—),男,土家族,湖北利川人,讲师,博士,研究方向:忆阻神经网络、室内定位。